If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.8t^2+19.6t+58.8=0
a = -4.8; b = 19.6; c = +58.8;
Δ = b2-4ac
Δ = 19.62-4·(-4.8)·58.8
Δ = 1513.12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19.6)-\sqrt{1513.12}}{2*-4.8}=\frac{-19.6-\sqrt{1513.12}}{-9.6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19.6)+\sqrt{1513.12}}{2*-4.8}=\frac{-19.6+\sqrt{1513.12}}{-9.6} $
| –8−2z=–3z | | 35=t/7+28 | | 5=5/7y | | -35/8=v-5/6 | | 0=-4.9t^2+16t+2 | | -8y+(y-7)=-36 | | 75=5(s+10) | | 18/3=32/x | | –(p−48)=11 | | 3a+6=10+7a | | 77.35=c+23.3 | | 58.2=6(m+3.1) | | u-14=3 | | 4=1/3x(4x+9) | | -6.4x=32 | | 3(8x-12)=5(3x+9)=9x | | 1.2x-2.5=0.6x-0.7= | | 10=m/72 | | 5m-19=26 | | 9x-12=36. | | 8.5y-2.5y=18 | | k+8.4=-6.4 | | 5m−19=26 | | -2(x+4)=4x+2 | | 8q+24=80 | | -6=(y)/(5)+2 | | 7/13a=2 | | 5+0.65x=10.100+0.45x | | 80=4h | | 16+q=17 | | 8/3x+3/2+2/3=-23/23/6 | | 3(j-72)=36 |